
Physics - Constraints and Solvers

Introduction

In the tutorial series so far, we’ve seen how to apply forces to rigid bodies, to produce both linear and
angular motion. We’ve also used collision detection to see if objects are overlapping, and used colli-
sion resolution to separate them back out again. So far, our objects have been otherwise completely
separate from one another - we’ve never created an object that is attached to another one in some
way, like the ball bearings of a Newton’s cradle attached to the frame with a wire.

To enhance our physics engine to support connected rigid bodies, we will in this tutorial be investi-
gating constraints, and solvers. Constraints allow us to formally define connections between objects
in terms of an equality equation, and allow us to apply impulses to keep rigid bodies a certain distance
apart, or a certain relative orientation to each other. Using these we can simulate ropes, hinges, and
ball & socket joints. As more constraints are added between objects, we will find ourselves with cases
where one rigid body is being manipulated by multiple constraints, which pull objects in different
ways. These combinations of constraints must be calculated and made correct using a solver - some-
thing which takes in one world state, and applies the correct calculations to maintain the correct
motion of our objects with as little error as possible.

Constraints

You might think that the answer to this problem is just to move the objects away from each other a
bit, by changing their position. While this would work, its not particularly physically accurate. Doing
this doesn’t take into consideration the masses of the objects, or the directions they are currently
travelling in. We’d essentially be ’teleporting’ the objects, something which might mean that they
move through objects they shouldn’t be, and will effectively add energy to the object (if we move an
object from point A to point B instantly, it won’t have had as much drag or friction applied to it as if
it got to point B under its own forces, so it can now move further than it should have as these forces
are expended).

To take into consideration all of these things, constraints are usually maintained by instead ma-
nipulating the derivatives of position; that is, either the velocity and acceleration of the object. So
rather than ’teleporting’ to a position/orientation that satisfies the rules of the constraint, we instead
apply forces or impulses to quickly adjust the object, so that the changes go through our physics
system and maintain consistency as much as possible.

Constraints are incredibly useful when writing physics code. Game physics is all about resolving
interactions between objects in some physically accurate way, whether they be collisions between ob-
jects, a constant amount of force being added towards a particular point, or a rope tying two objects
together; all of these things and more can be written as a constraint. In a way, just as shaders are the
building block of adding unique graphical features to our game, constraints are the method by which
we add unique physical features to our game.

Degrees of Freedom

As the name would suggest, a constraint will constrain, or limit, our physics object in some way.
Constraints will typically in some way need to adjust the orientation or position of an object - we call
these modifiable aspects degrees of freedom, so our objects start with 6 degrees of freedom (sometimes
referred to as 6DoF ) - the x,y and z axis positions, along with the rotations around the x, y and z
axes. The job of a constraint is to in some way limit each of these degrees of freedom’s ability to
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change, such that overall, the constraint is considered ’satisfied’. Note that although we’ve so far
been using quaternions to store a rotation, and thus using 4 values, that’s not ’4 degrees of freedom’
- quaternions are tool for storing the 3 axes of rotation efficiently and in a way that lets us transform
and store them efficiently, but unlike a position, where every value is entirely separate, the values of a
quaternion are all related, and just changing one won’t just change ’one axis’ the way a position does.

Constraints as an equation

During the last two modules, we have on occasion seen the plane equation, usually formulated like so:

ax+ by + cz + d = 0

This is saying that for any point (xyz), if the result is 0, then the point is on the plane. We can
then further say that if the value is greater than 0, the point must move along the plane’s normal to
reach the plane, and if it less than 0, the point should move the other way along that normal to reach
the plane. Why is the plane equation being brought up again? Broadly speaking, the same logic for
moving that point to sit exactly on a plane, is how our constraints work - we usually have some sort
of condition that we want to equal 0. When dealing with rigid bodies, those constraint conditions
will generally be related to either the position or orientation of the rigid body, and we want to change
them so that their difference from what the constraint says they should be is 0 - if the properties of
the rigid body match up to a constraint, we say that the constraint is satisfied

Distance Constraint

The classic example of a distance constraint in a game is in character ’ragdoll’ physics - when an
enemy ’dies’ they collapse in a heap and can be pushed around by the player, or roll down hills and
fall off platforms with amusing results. Under the hood, we can imagine the normal skeletal animation
system of the enemy has been replaced by physics calculations, with each bone in the skeleton given
a mass and a collision volume just like a ’normal’ rigid body. To prevent the limbs then flying off
or otherwise becoming disconnected, they are connected with constraints on their position - their
orientation can change freely, but their position relative to their ’parent’ connector cannot change,
keeping the body together, but letting it flop about. In this case, we’re really describing a constraint
that limits the degrees of freedom to 3 - allowing the orientation around the 3 axis to be changed at
will, but locking the 3 positional axes completely. Such a constraint is sometimes known as a ’ball
and socket’ joint, as it mimics its real life counterpart.
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To examine distance constraints in a bit more detail, let’s consider a fairly simple constraint that
we might see in games - the ninja rope utility as seen in Worms:

Here, the player has fired a rope which has collided with the ceiling (the raycasting techniques we
saw earlier in the tutorial series could be used to find a suitable surface for the rope’s attachment),
allowing the player’s worm character to swing around, and eventually release the rope and launch
themselves to another part of the level. If we take more a ’game logic’ view of what’s happening, we
might have something like this:

From the point of view of the data structures and techniques we’ve seen so far on this tutorial, we
could replicate this scene with a couple of AABB rigid bodies with an inverse mass of 0 to represent the
floor and ceiling girders, and a couple of sphere rigid bodies for the player characters. To implement
the ninja rope, we want to add a distance constraint, between point A and our player character B,
with a maximum length of d. To make things a little easier to follow, let’s assume that point A is a
temporary rigid body with an inverse mass of 0, so that it also cannot move. When the player moves
their character left or right, eventually they will be at a distance of greater than d from the connected
point A:
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To put it another way, at some point, the player will apply a force that results in a velocity that
would break the constraint, if it were to be integrated into the player character’s position. Therefore,
to not break the constraint, we have to change that velocity so that when it is integrated, the con-
straint of being distance d away from rigid body A is still maintained, or satisfied.

We can represent this constraint more generally with the following constraint equation:

P = ||B −A||
C = P − d

We will usually see our constraint noted as being C in this way, and we can see that following
through the calculation that if object B is exactly distance B away from A, the result of C will be 0,
and thus satisfied; if however, it is not the same, the constraint will in some way be broken, by either
a positive or negative amount.

We can say that P − d represents the displacement of the objects in constraint space, a coordi-
nate system where the origin represents a ’satisfied’ constraint. Therefore, to satisfy the constraint,
we must in some way modify the first derivative of the constraint. As P-d is formed from the object’s
position, we can therefore say that the first derivative of C (which we’ll denote Ċ) is formed from the
first derivative of the object positions; their velocities. To satisfy the constraint, we must in some way
transform the object’s relative velocities, to make sure that once integrated into the object’s position,
they move them closer to 0 in the constraint’s space. As the velocities are vectors, we can transform
them using a matrix:

Ċ = J · v

This matrix J is known as the Jacobian matrix, which more formally defines the partial derivatives
of a vector valued function - in this case the function is changing the constrained object’s position
vectors by v over time. We generally don’t want to lose the velocity being applied (we want our ob-
jects to conserve their momentum when possible), but transform it such that it satisfies the constraint
while still behaving physically consistently - this is why in a constraint, we don’t just set the positions
such that the constraint becomes satisfied.

Let’s take a closer look at what the equation above is formulated. The vector value v is our con-
strained object’s velocities (we’re dealing with the first derivatives of our constraint):

v =

[
vA
vB

]
Our Jacobian matrix is therefore what the change in one object’s velocity will do to the other

object’s velocity if the constraint is to remain satisfied:

J =

[
VA − VB
VB − VA

]T
It’s common to see a Jacobian denoted as being a transpose, as above; this is because to transform

our 2 x 1 matrix v, we need a 1 x 2 matrix - which is the same as a 2 x 1 matrix transposed. In the wider
field of vector valued functions, Jacobians can be tricky to look at (there’s lots of the del operator:
∂u1

∂x1
), and hard to visualise (that is, what they’re trying to represent). Fortunately, we’re dealing

entirely with concepts we’re very familiar with by now - positions in 3D space, and velocities that
move through that 3D space; if we think of our constraint transforms this way, then our Jacobian just
boils down to how much the position and orientation of one object affects the position and orientation
of another object when trying to keep the constraint satisfied.

Hinged Constraint

It’s not just the relative position of an object we might want to constrain, but sometimes the relative
orientation, too. Consider the case of the front door of a house - we want the door to be able to swing
outwards to open up and let us in, but we don’t want it to fall over, or be lifted up and taken away.
In real life, this is achieved by connecting the door to the doorframe via a hinge, which can angle in
and out to allow the door to move. In a simulated environment like a game, we would usually have a
wall object with a door-shaped ’hole’ in it (or multiple objects making up a wall, each of which can
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then be fully convex), a ’door’ object, and then a constraint between the two to allow some rotational
changes, but no positional ones. In other words, we’re limiting the degrees of freedom to 1 - the ’yaw’
of the door; all other changes are disallowed.

We can continue our Worms example to see how a hinge constraint might work. Perhaps instead
of a maximum rope distance d, the Ninja rope is instead constraining the worm so that its local ’up’
direction always faces its attachment point, as in each of the potential locations B for our worm here:

Broadly speaking, the worm is our door and point A is our hinge - the concept is exactly the same,
in that we’re constraining the relative orientation; although of course, our door would also have its
position constrained, too!
Our constraint calculation starts off looking exactly the same as in the previous example:

Ċ = J · v

The difference is this time, v contains the angular velocities of the worm and the attachment point:

v =

[
ωA

ωB

]
Therefore, the Jacobian matrix for our constraint is then:

J =

[
(ωA − ωB)× n
(ωB − ωA)× n

]T
In this case, we’re trying to find an axis by which to rotate the orientation around so that the up

and down axes of the worm and its attachment point coincide.

Collision resolution as a constraint

In our distance and orientation constraints, we were formulating them as an equation that was sat-
isfied when it became 0. If we think back to the collision resolution we did earlier in the tutorial
series, we actually needed to do something similar to a distance constraint - we had to force objects
that are intersecting one another to be at a distance of at least 0 away from each other, taking into
consideration the intersection depth. In other words, we were forming a temporary distance constraint
that will in some way change the positions of the objects such that they satisfy a constraint upon
their positions such that their volumes do not overlap. However some intersections are also solved by
changing the orientations of objects - an OBB falling at an angle onto the floor will get rotated such
that it lies flat on the floor. So as well as being a constraint on the object’s positions, we can model
collision resolution as also being a constraint on the object orientations.
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Let’s break this idea down to see how the constraint ends up being formulated. If we assume our
now-standard constraint calculation:

Ċ = J · v

Our resolution constraint would have a v vector as follows:

v =


vA
vB
ωA

ωB


We saw in the earlier tutorial that we resolve collisions by trying to add forces along the collision

normal, which we’ll denote n. We also assumed the objects were colliding at a specific point p in the
world. To encode the same collision resolution behaviour in a constraint, we end up with both n and
p inside our Jacobian matrix:

J =


−n
n

−(p− sA)× n
(p− sB)× n


From there, we get the following full constraint calculation:

Ċ =


−n
n

−(p− sA)× n
(p− sB)× n



vA
vB
ωA

ωB


To solve our object intersection constraint calculation, we need the penetration distance to be-

come zero, so the derivative of a constraint must make the answer approach zero, meaning we have
to form a Jacobian matrix that takes in our colliding object’s first derivatives, and changes them to
suit our constraint - we’ve really been doing this particular form of constraint in a limited form since
the collision resolution tutorial, its just now we’re seeing it in a slightly differently formulated way.
Our object positions should be separated out along the collision normal, and our object orientations
should change by an angular change proportional to the collision normal and the relative position of
the collision - we saw in the collision resolution tutorial how taking the cross product of these provides
the axis of rotation for that object.

In this particular constraint we saw that the partial derivatives of the constraint might end up with
extra data in them (in this case the collision normal and the relative position). We can think of this as
being the programmable element of the constraint - different constraints will have different Jacobian
matrices, and may require the calculation of additional information to properly formulate in a way
such that they can be satisfied correctly.

Lagrange multiplier and constraint force

The basic formulation of a Jacobian matrix doesn’t change for a particular ’type’ of constraint - the
collision resolution constraint above will always have a Jacobian matrix that transforms the positions
and orientations of two objects, based on the collision normal. What we haven’t seen so far is the mag-
nitude of how those velocities should change, only which direction they should change in. To correctly
satisfy our constraint, we must therefore scale the Jacobian in some way so as to make it result in C
= 0 when applied. This scaling factor is known as the Lagrange multiplier, often denoted as λ (and so
sometimes just referred to as ’lambda’, too). We know our Jacobian, and we know our input variables,
we just don’t know (yet) the correct values for λ, giving us an equation that we must in some way solve.

The true purpose of a constraint is to add some forces to our objects so that they end up in a
state that satisfies that constraint. We can therefore think of our constraint as being the process of
determining the linear and angular constraint force to apply to our objects, in the form of:

F = JTλ
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Solving systems of constraints

It is often the case in video games that we may want to have multiple constraints operating on the
same objects. For a quick ’game’ example, think of a small rope bridge, of boards linked together
with distance constraints, as in the image below:

If any forces are enacted upon one of the links, the rest will be pulled around by the constraints,
creating a suitably wobbly rope bridge, at least in theory. What is more likely to happen is that even
without any forces directly applied, the bridge links wobble about anyway, and might even start to
build up velocity in an unrealistic manner. To understand why this is so, we need to think about how
our constraints are satisfied. If we have a list of constraints, and solve the constraint forces for each
separately, our rope bridge will misbehave:

If we let the first distance constraint calculate its result, the bridge pieces moves left, causing the
constraint on the right to become violated. If we calculate the constraints the other way around,
we instead violate the left constraint. What do we do to minimise the error in our two constraints?
To fully integrate constraints into a physics engine, not only does the constraint force have to be
determined for one constraint, but for an entire system of constraints simultaneously.

Calculating λ

When dealing with interactions between our rigid bodies, we’ve in previous tutorials seen how this
can be achieved by modifying a body’s position, its first derivative of position (velocity), or its second
derivative of position (acceleration). Therefore, to satisfy our constraints, we can do the same (along
with the orientation and its derivatives, of course). Generally though, constraints are solved with
changes in velocity, for much the same reason as the collision resolution we saw earlier - we can easily
conserve momentum, and we quickly converge upon a correct answer (springs might let a constraint
remain violated if they are not encoded correctly for their k value, for instance). To solve our con-
straints, we generally then determine which impulses to apply to our constrained objects - an impulse
is just a force over time, so it maps easily onto our idea of a constraint force. Knowing this, solving
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any constraint’s λ is just to calculate the correct impulse to accommodate for the mass of the objects,
in the correct direction. Our Jacobian matrix already contains the correct direction, so our Lagrange
multiplier needs to just work on object linear and angular velocities, and how much those velocities
map onto solving the constraint, divided by the mass of the constraint.

For our distance constraint, where only the object masses matter (rather than the moment of in-
ertia at a particular point), we get a final λ like so:

λ = (
1

ma
−1 +mb

−1
)J · v

The multiplication of our object vector v and our Jacobian matrix v gives us the relative velocity
along the axis that will solve the constraint (for a distance constraint, that’ll be the direction vector
between the objects), and by scaling by mass, we get a resulting λ value that, when applied in that
direction as an impulse (which then takes into consideration inverse mass), we get a correct physically
accurate response that conserves momentum - you should remember adding object masses together
from when collision resolution was added to the codebase in an earlier tutorial, and this is no coinci-
dence, as that impulse can be seen as a single frame’s worth of a constraint between the two objects.

We can calculate the same result for λ by forming a mass matrix for the constraint rigid bodies
like so (assuming the constraint is to take both linear and angular velocity into account):

M−1 =


ma

−1

mb
−1

Ia
−1

Ib
−1


From there, we can determine λ as follows:

λ = (
1

JM−1JT
)J · v

This allows us to encode all of the properties of our constraints as a set of matrix multiplications
in a generic form - as long as we form the correct Jacobian, and scale the result by the correct mass
matrix, our resulting constraint force will be of sufficient magnitude to bring our objects towards a
constraint satisfaction state.

Global vs Iterative solvers

Roughly speaking, we now know how to solve any single constraint - we scale its Jacobian by the
constraint mass to determine some impulses to apply to our objects. But what about when there’s
multiple constraints? In the example earlier we saw how solving any one constraint violates the other,
so one solution is to calculate all of the constraints together in one single large calculation. To do so,
we’d need an expanded v vector containing all of our constraint rigid body information for constraints
0 to n, and a larger n x n matrix of all of constraint Jacobians down the diagonal.

So far so good - by encoding constraints in Jacobian matrix form, they are easily combinable into
larger matrices. However, each constraint can invalidate another, so they are not entirely independent
- in matrix form that means we don’t just have a diagonal matrix of Jacobians, but a mapping of the
changes of those Jacobian combinations - more derivatives! Also, as the number of constraints grows,
the size of this combined Jacobian matrix goes up by the square of the increase; as each Jacobian
is itself a matrix with a number of elements, it can quickly be the case that a combined matrix has
1000s of entries, many of which are just zeroes (for constraints that don’t affect each other), but which
still need processing. Together, this is known as a global solver, and while it will produce the correct
answer, it can’t do so quickly, and its not even guaranteed that there is a solution - if two distance
constraints both say that object B needs to be 20 units from object A or B, but A and B are 5000
units apart, those constraints will never be satisfied anyway, and trying to solve them as part of a
larger whole is going to cause other dependent constraints to go wrong along with them.

8



Instead of a global solver, most video game physics systems will instead use an iterative solver for
its constraints. In an iterative solver, each constraint is looped over and solved on its own, with the
results fed back in to the next iteration of the solver, so that over multiple iterations the constraints
that influence multiple objects converge towards all being as close to being satisfied as possible. This
has the benefit of allowing each constraint to be calculated in the simplest way possible, rather than
plugging in generic values into a global solver - for example, in our distance constraint we can use
vector multiplication rather than matrix multiplication if we know that the velocity in one axis has
no bearing on another axes’ velocity, and will never influence any other constraint directly (only in-
directly through the iterative process).

As the results of our constraint solution involve the calculations of impulses, which change the ve-
locities of rigid bodies, the calculations that each iteration of the solver make must be based on the
velocity - as we’ll see in the code later, this is no problem, as our constraints operate on velocity
anyway. The most common form of iterative solver used in physics engines is known as Sequential
Impulse, which is in turn a form of Projected Gauss-Seidel. Whatever we call our iterative solver, the
general form is the same:

1 while (! finished) {

2 for(each constraint in system) {

3 Calculate Jacobian

4 Calculate lambda

5 Apply resulting impulse

6 }

7 }

Iterative solver pseudo code

As each iteration results in different impulses, the next iteration of the solver sees different rela-
tive velocities (either from that same constraint’s previous iteration, or as the result of some other
constraint operating on the same objects), and so different ways in which the constraint is being vi-
olated, so that after a number of iterations, the objects are pushed towards an acceptable answer for
their linear and angular velocity. The exit condition for the loop above might be a simple maximum
number of iterations, or each constraint could become inactive for that frame after a given threshold
of closeness is reached - a maximum number of iterations is recommended for the same reason as the
global solver example above, in that there could be some constraints that simply cannot be satisfied
for whatever reason.

Adding bias

While most constraints are solved via their first derivative, the solution might not actually move the
constraint that close towards being satisfied. For instance, the impulses applied to keep a distance
constraint together might be slowly beaten by gravity, resulting in the constraint becoming more vi-
olated over time. The solution to this is to in some way bias the results of the constraint calculation
in some way:

Ċ = J · v + b

A common method of adding bias is Baumgarte stabilisation, which takes the following form:

b =
β

dt
C

Where β is a bias factor within the range 0 to 1 (usually very close to 0). This will take the current
amount our constraint C is being violated by, and add it to our components of v, artificially inflating
them, and thus causing the resulting impulses to be larger the more the constraint is violated by. By
adding this in to each iteration of the iterative solver, any error that occurs due to external forces or
numerical instability will hopefully be minimised, and the system correctness as a whole maintained
as much as possible.
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Tutorial Code

To see a practical demonstration of constraints in action, we’re going to make a typical use case for a
persistent constraint - we’re going to make a simple ’rope bridge’ out of cubes, connected with distance
constraints. The ability to add constraints to the game world is already present in the codebase - the
GameWorld class stores a collection of pointers to Constraint objects, which are declared as follows:

1 namespace NCL {

2 namespace CSC8503 {

3 class Constraint {

4 public:

5 Constraint () {}

6 ~Constraint () {}

7

8 virtual void UpdateConstraint(float dt) = 0;

9 };

10 }

11 }

Constraint class header

There’s not much we can say about what a constraint does other than that over time it will try
and apply impulses to try and satisfy its requirements, so all the base class has is an UpdateConstraint
method, which takes in the frame’s timestep (or, as we’ll see later, a subdivision of that timestep to
allow the constraint to iterate multiple times, as an iterative solver).

To actually create an implementation of a constraint, we’re going to make a new subclass, Posi-
tionConstraint, with a header file that looks like this:

12 #pragma once

13 #include "Constraint.h"

14

15 namespace NCL {

16 namespace CSC8503 {

17 class GameObject;

18

19 class PositionConstraint : public Constraint {

20 public:

21 PositionConstraint(GameObject* a, GameObject* b, float d) {

22 objectA = a;

23 objectB = b;

24 distance = d;

25 }

26 ~PositionConstraint () {}

27

28 void UpdateConstraint(float dt) override;

29

30 protected:

31 GameObject* objectA;

32 GameObject* objectB;

33

34 float distance;

35 };

36 }

37 }

Constraint class header
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This will let us represent a constraint that tries to maintain a set distance of d between two
GameObjects a and b. The workings of the constraint are entirely within the override UpdateCon-
straint method:

1 void PositionConstraint :: UpdateConstraint(float dt) {

2 Vector3 relativePos =

3 objectA ->GetConstTransform (). GetWorldPosition () -

4 objectB ->GetConstTransform (). GetWorldPosition ();

5

6 float currentDistance = relativePos.Length ();

7

8 float offset = distance - currentDistance;

PositionConstraint::UpdateConstraint method

The first thing we need to do is work out if the two objects are breaking the rules of the constraint
or not. As this is only a distance constraint, all we need to check is their relative position to each
other, and then work out how far off this is from matching the constraint’s preset distance variable
(line 8).

In the case where the objects are either too close or too far away (either way breaks this constraint, so
we can imagine the constraint as being a solid rod connecting our objects), we need to work out how
much of the two object’s velocities are working against the satisfaction of the constraint (that is, how
much of the velocity is resulting in a change in the constraint, which in this case will be almost any
relative velocity), and use that as a scaling factor for the corrective forces (line 24). To try and come
up with a solution for the lagrange multiplier, we’re also going to add in a small amount of bias, using
the Baumgarte stabilisation method outlined earlier. The biasFactor on line 26 is a tuneable vari-
able - different constraints may require different amounts of bias added to make their constraint stable.

We then just add on our bias to the effective velocity, and divide the answer by the constraint mass
(line 31) - by dividing by the (inverse) mass, we work out a correct full amount of force to try and
apply, as the ApplyLinearImpulse method will divide the value back down by that object’s actual
mass. This means our constraint still obeys the laws of motion - there’s an equal and opposite force
applied to both objects, and momentum will be conserved.

Note that we never actually make the Jacobian matrix directly, we just construct the equivalent
vectors and scale them by lambda. Our distance constraint should have position partial derivatives
equivalent to vectors that bring the positions closer together (the normalised vector between the two
objects), and as we’re trying to solve the constraint using velocity, we then apply impulses, which over
the course of the iterative solver, work to satisfy our constraint in a realistic manner.

10 if (abs(offset) > 0.0f) {

11 Vector3 offsetDir = relativePos.Normalised ();

12

13 PhysicsObject* physA = objectA ->GetPhysicsObject ();

14 PhysicsObject* physB = objectB ->GetPhysicsObject ();

15

16 Vector3 relativeVelocity = physA ->GetLinearVelocity () -

17 physB ->GetLinearVelocity ();

18

19 float constraintMass = physA ->GetInverseMass () +

20 physB ->GetInverseMass ();

21

22 if (constraintMass > 0.0f) {

23 //how much of their relative force is affecting the constraint

24 float velocityDot =Vector3 ::Dot(relativeVelocity , offsetDir );

PositionConstraint::UpdateConstraint method
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25 float biasFactor = 0.01f;

26 float bias = -(biasFactor / dt) * offset;

27

28 float lambda = -(velocityDot + bias) / constraintMass;

29

30 Vector3 aImpulse = offsetDir * lambda;

31 Vector3 bImpulse = -offsetDir * lambda;

32

33 physA ->ApplyLinearImpulse(aImpulse );// multiplied by mass here

34 physB ->ApplyLinearImpulse(bImpulse );// multiplied by mass here

35 }

36 }

37 }

PositionConstraint::UpdateConstraint method

TutorialGame Class

To demonstrate our new constraint, we’re going to make the classic distance constraint test - a rope
bridge. To do this we’re going to have two rigid bodies fixed in position using an inverse mass of 0,
and have a chain of addition cube rigid bodies between them, each linked with a distance constraint.
The code for this we’re going to add to the empty BridgeConstraintTest method - this can be called
inside InitWorld much like the InitCubeGridWorld that created the very first physics environment we
saw back in tutorial 1. Here’s how the code looks:

1 void TutorialGame :: BridgeConstraintTest () {

2 Vector3 cubeSize = Vector3(8, 8, 8);

3

4 float invCubeMass = 5; //how heavy the middle pieces are

5 int numLinks = 10;

6 float maxDistance = 30; // constraint distance

7 float cubeDistance = 20; // distance between links

8

9 Vector3 startPos = Vector3 (500, 500, 500);

10

11 GameObject* start = AddCubeToWorld(startPos + Vector3(0, 0, 0)

12 , cubeSize , 0);

13 GameObject* end = AddCubeToWorld(startPos + Vector3 (( numLinks + 2)

14 * cubeDistance , 0, 0), cubeSize , 0);

15

16 GameObject* previous = start;

17

18 for (int i = 0; i < numLinks; ++i) {

19 GameObject* block = AddCubeToWorld(startPos + Vector3 ((i + 1) *

20 cubeDistance , 0, 0), cubeSize , invCubeMass );

21 PositionConstraint* constraint =new PositionConstraint(previous ,

22 block , maxDistance );

23 world ->AddConstraint(constraint );

24 previous = block;

25 }

26 PositionConstraint* constraint = new PositionConstraint(previous ,

27 end , maxDistance );

28 world ->AddConstraint(constraint );

29 }

TutorialGame::BridgeConstraintTest() method
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We start by making our fixed objects with infinite mass (line 11 and 13), and then progressively
add more objects between them (line 18) - by using the previous pointer we always know the other
object to connect our newly added block to. All we have to do is make sure our last box gets
constrained to the far side (line 26), or our rope bridge will just flop down due to gravity - that’s
fine if we’re making the swinging rope in Pitfall, but for a proper bridge we’ll need to attach it properly.

The mechanism for updating each constraint is already present within the PhysicsSystem::Update
method, like so:

1 float constraintDt = iterationDt / (float)constraintIterationCount;

2 for (int i = 0; i < constraintIterationCount; ++i) {

3 UpdateConstraints(constraintDt );

4 }

5 IntegrateVelocity(iterationDt );

PhysicsSystem::Update() method

The constraintIterationCount variable starts being set to 10, but is easy enough to change on the
fly with the addition of some keyboard checks - you should find that more iterations results in an
overall more stable constraint chain, at the cost of more computation.

GameWorld Class

The GameWorld class needs a little adjustment - when the world is cleared, the constraints should
also be removed, and when erased should also be deleted:

6 void GameWorld :: Clear() {

7 gameObjects.clear ();

8 constraints.clear (); //new line!

9 }

10

11 void GameWorld :: ClearAndErase () {

12 for (auto& i : gameObjects) {

13 delete i;

14 }

15 for (auto& i : constraints) {

16 delete i; //new for loop!

17 }

18 Clear ();

19 }

PhysicsSystem::Update() method

Conclusion

If you’ve managed to do everything correctly, you should find a line of cubes in your game world.
Enabling gravity should cause that line to flop down in the middle, and stabilise into A ’U’ shape
- the ends are fixed in place due to their inverse mass of 0, but the middle elements are free to fall
under gravity, until they are kept together by the constraints adding corrective impulses.

Constraints are the inner mechanisms by which physics engines maintain the stability of the game
world, and allow us to define further relationships between our objects, so that they don’t necessarily
just collide, but in some way cause changes in each other’s position and orientation over time. In
a way, we’ve been doing constraints since the collision resolution tutorial, but now we’ve seen the
skeleton of an overall framework for constraints, and how they can be used to define changes in our
world’s rigid bodies. We’ve also learned a little bit about solvers - mostly that global solvers are hard,
and iterative solvers need a little bit of help via Baumgarte stabilisation to keep the world in a correct
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state. With the Jacobian matrix, and relationship between two object’s position and orientation can
be represented, and from there we can just solve them as part of the overall iterative process.

Further Work

1) The code so far only provides a single ’position constraint’ type. Try adding in an additional con-
straint that also constrains the orientation of the two attached objects. Doing so should then be able
to limit the ability to spin around the cubes freely by adding forces to them; the torque will instead
be spread out throughout the entire rope bridge.

2) Another variation of constraint can be something which purposefully adds force and torque, as
a motor effect. This should be able to be achieved as a slight modification of the position constraint
(for linear motion) or the above orientation constraint (for angular motion) to modify the distance
check to add on an offset, and calculating a new normal value to where the object should be moving
to / facing towards.

3) As well as persistent constraints, its also possible to make temporary ones that fulfil some pur-
pose and are then removed. We can use this to provide a collision resolution constraint, that replaces
the current ImpulseResolveCollision method with the adding of a ResolutionConstraint to the
PhysicsSystem. You’ll need to add some method of determining when a constraint should be re-
moved from the system (in this case, when there’s no collision between the objects any more), and a
new class to represent a constraint that will calculate the correct impulses to separate out the objects
such that momentum remains conserved.
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